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Abstract. The Internet of Things (IoT) has become entrenched in many
users’ networks due to the utility these Internet-connected objects pro-
vide. But this does not mean that users should unconditionally trust IoT
devices on their networks. While several approaches exist for restricting
network connectivity of IoT devices, these proposals typically identify
legitimate traffic, and then permanently allow it to flow to or from the
device. In this paper, we argue that this permanent access control can
lead to privacy and security violations, and in many cases is not strictly
required. We present If-This-Then-Allow-That (IFTAT), a framework
that supports security policies that dynamically update network access
control rules based on the type of access that is required at any given
time. Device or environmental triggers such as motion sensors or mo-
bile phone applications initiate the process of adding firewall exceptions,
which are removed either automatically or after another trigger is acti-
vated. We describe a proof of concept implementation which shows how
IFTAT can restrict the network access of untrusted IoT devices with
little impact to the usability of these devices.

1 Introduction

Internet of Things (IoT) devices have been widely exploited by attackers to
carry out malicious activities against their users and the Internet at large [1, 7,
11, 14, 21]. The exploitation of IoT devices also threatens user privacy, since IoT
devices often access and handle privacy-sensitive data such as audio or presence
information. While evidence suggests [19] that users are interested in knowing
what data their devices send over the network and why, users are often unaware
of this information due to the lack of security and privacy tools that provide it. To
mitigate the exploitation of IoT devices, prior research has proposed mechanisms
to narrow the scope of allowable IoT device network traffic, e.g., by restricting
allowable protocols or allowable source and destination ports and hosts [5, 18,
22]. Many proposed methods employ security policies to allow network traffic
that matches pre-defined rules, but few of these methods update the rules in
response to contextually-relevant information. This means that a smart doorbell
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could upload audio or video to the cloud even while the user is not using the
doorbell’s mobile app, or that a motion sensor could report motion activity
even when an alarm system is disarmed. We are thus motivated to rethink IoT
network access control: we aim to provide users with greater control of when
their IoT devices communicate over the network, and we do so by providing a
means to mediate network traffic based on contextual events that reflect users’
real-world usage patterns.

We propose the If-This-Then-Allow-That (IFTAT) framework, which intro-
duces a new time-based dimension to network access control by allowing user-
defined policies to update traffic mediation rules in response to trigger events.
Trigger events can be generated by sources such as physical sensors, network
traffic signatures, or software running on a user’s device. User-defined policies
specify rules for allowing or denying network traffic to or from a target device
(e.g., a security camera, thermostat, doorbell, network-attached storage) in re-
sponse to the occurrence of a trigger event (e.g., motion detection, light switch
turned on, application launched on a user’s smartphone). For example, a ther-
mostat might only be allowed to communicate with a cloud service provider
while there is a human user in close physical proximity to the thermostat; or a
surveillance camera might only be allowed to stream video to the cloud while
the owner of the camera has the companion app running in the foreground on
their smartphone. IFTAT does not need to learn the network traffic patterns
of IoT devices, but IFTAT policies can optionally use such patterns to enable
more granular rules for allowing or denying network traffic. Fig. 1 illustrates the
timeline of events when executing a policy that applies a traffic mediation rule
(e.g., allow a security camera to access the Internet) in response to a trigger
event, followed by a change or reversal of that rule (e.g., by denying the security
camera access to the Internet) in response to a subsequent trigger event.

Wait for a new trigger event to occur that will reverse or modify the changes just applied.

E5. Enforcement Detected 
The device targeted by the policy
detected the change in network

access resulting from the changed
traffic mediation rules. 

Time Elapsed 

E1. Trigger Occurred 
A trigger event has occurred in
the real world, for which a user-
defined policy requires a change

in traffic mediation rules 

E2. Trigger Detected 
The trigger device detected the

event and reported the
occurrence of the event. 

E3. Policy Determined 
The policy manager received the event

report, determined the required changes
to the traffic mediation rules, and sent

them to the policy enforcer.

E4. Policy Enforced 
The policy enforcer applied the
required changes to the traffic

mediation rules. 

Fig. 1. The timeline of events that occur while detecting a trigger event (blue), applying
a change in traffic mediation rules (green), and waiting for a new event to subsequently
reverse or modify the previous change in traffic mediation rules (red).

IFTAT is well-suited for protecting devices that have the characteristic of
predictably and consistently requiring network access in response to specific
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trigger events that can be detected by other devices on the network. IoT devices
in particular fit this general characteristic, since they are generally known to
have specialized features that can be implemented by predictable and repetitive
actions such as submitting sensor readings to a cloud service at a regular inter-
val [22]. However, our system may also complement traditional firewall rules to
reduce the attack surface on more general-purpose devices as well, particularly
those that provide services over the network such as network-attached storage.

The contributions of this paper are as follows.

1. We present IFTAT, a framework for time-based network access control de-
rived from user-defined trigger events.

2. We demonstrate the use and effectiveness of IFTAT on mainstream IoT de-
vices and hardware through a proof of concept implementation. We propose
and implement an initial set of trigger events.

3. We provide a discussion of how IFTAT defends against two distinct threat
models that we define.

The remainder of the paper is structured as follows. Sections 2 and 3 outline
the IFTAT security goals and system design, respectively. Section 4 discusses
related work. Section 5 discusses and categorizes trigger events that we pro-
pose and that we identify from other work. Section 6 presents use cases that
we implement with our instantiation of IFTAT using commodity hardware and
software. Section 7 discusses security considerations and potential focuses for
standardization effort, and Section 8 concludes.

2 Security Goals and Threat Model

IFTAT reduces the attack surface of IoT and other special-purpose devices by
reducing the times during which they have unrestricted network or Internet
access. This reduced network access is designed to serve as a defense against the
following two threat models.

T1: Large-scale opportunistic exploitation. IoT devices are prone to
being targeted and exploited by large-scale operations. Large botnets have been
created via automated device scanning and exploitation, and leveraged for ma-
licious activities such as distributed denial of service (DDoS) attacks [1, 7]. Res-
idential proxies as a service leverage both volunteer users and compromised IoT
devices as proxies to funnnel customers’ traffic through residential Internet con-
nections to evade measures such as bot detection or geoblocking [11]. These
operations often exploit devices running firmware with unpatched vulnerabili-
ties. Confining the network access of devices to only periods when the access is
required would significantly narrow their window of exploitability (and, in the
event of device compromise, would reduce the time windows during which they
can be leveraged for malicious activities).

T2: Exfiltration of privacy-sensitive data. IoT devices often handle
privacy-sensitive data such as audio or presence information. Restricting devices’
network connectivity reduces the potential for the exfiltration of privacy-sensitive
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data, whether due to exploitation as explained immediately above, device error
(e.g., due to misinterpreting the user’s intentions [13]), or the collection of track-
ing and usage data by device manufacturers [8].

3 System Design and Overview

The IFTAT framework specifies four device classes: untrusted devices, trigger
devices, policy enforcers, and a policy manager. Fig. 2 illustrates how these
devices interact with each other: trigger devices report trigger events to the
policy manager, which in turn sends instructions to policy enforcers for how to
mediate network traffic to and from untrusted devices. IFTAT can function with
multiple trigger devices, untrusted devices, and policy enforcers on the same
network.

Trigger Device 
E3E2

Event Reported 

Policy Manager

Cloud Service 

Enforcement
Commands Sent 

Policy Enforcer

E4

External
Network 

Untrusted Device

Policy Enforced

Fig. 2. Sequence of actions performed by each device following the occurrence of a
trigger event. Each line represents a network connection, and is labelled with an action
performed over that connection during events E2-E4 from Fig. 1. The dashed line at
the policy enforcer denotes a network bridge, and the dashed lines leading to the cloud
service denote an optional communication path used by some trigger devices.

3.1 Untrusted Devices

An untrusted device is a network-connected device designated by the user to have
its network access mediated by the occurrence of user-defined trigger events. Un-
trusted devices may often be IoT devices, since they have simpler network traffic
patterns [22] and often handle privacy-sensitive data, which may motivate users
to ensure that such devices remain uncompromised [19]. Examples of such IoT
devices may include security cameras, voice assistants, and door locks. General-
purpose devices may also be designated as untrusted devices; e.g., a user may
wish to restrict network access to their network-attached storage (NAS) device
that performs backups of the user’s other devices; the user may wish to allow
network access to the NAS only in response to trigger events that indicate that
a backup will take place (e.g., the user launching a backup application).

3.2 Trigger Devices and Trigger Events

A trigger device detects trigger events and reports them to the policy manager.
Examples of trigger devices include special-purpose hardware devices such as
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motion sensors or light switches. A trigger device may also be a general-purpose
device, such as a smartphone running a program that reports user actions, or
a network traffic analysis device that reports the occurrence of device activities
(e.g., streaming video, updating firmware) on the network [17]. Examples of
trigger events are discussed further in Section 5. Depending on the context, a
device may be both an untrusted device and a trigger device; for example, a
motion sensor may report a trigger event to enable network connectivity for a
light switch, and the light switch may in turn report a trigger event to enable
network connectivity for a security camera.

Trigger events may have different delays between the events E1, E2, and E3
denoted in Fig. 1. The delay from E1 to E2 is the time elapsed between the event
occurring and the detection of the event by the trigger device. For example,
passive infrared (PIR) motion sensors typically report motion if it has been
detected continuously for a period of time such as two seconds. In contrast, the
opening of a mobile application can be detected virtually instantaneously when
the user taps on the application icon. The delay between E2 and E3 is the time
elapsed between the trigger device reporting an event and the policy manager
receiving the report. This delay can be near instantaneous if the trigger device
is on the local network and report events to the policy manager over the local
network; if the trigger device instead reports events to a cloud service provider,
additional delay will be introduced since the policy manager would need to poll
the cloud service provider at a regular interval to identify the occurrence of an
event. RTX-IFTTT [3] provides a technique to minimize this delay by sniffing
outgoing cloud API calls made by IoT devices on the local network, which would
eliminate the need for the policy manager to poll the cloud API.

3.3 Policy Enforcer

Policy enforcers mediate network access to and from untrusted devices. A pol-
icy enforcer may employ a packet filtering firewall to mediate access based on
attributes such as IP address, protocol, and port number. Alternatively, it may
employ an application-layer firewall, e.g., to mediate HTTP requests. Each pol-
icy enforcer receives instructions from a centralized policy manager for how to
enforce network access restrictions. The instructions received will be tailored to
the traffic mediation capabilities of the policy enforcer and the set of untrusted
devices that are connected to the network through the policy enforcer.

3.4 Policy Manager

The policy manager performs the following key functions:
Policy creation and storage. An interface and syntax is provided for the

creation of IFTAT policies. IFTAT policies define how to allow or block network
access to or from an untrusted device when a specified trigger event occurs.
Network access may be allowed or blocked either in whole or based on specified
network packet header attributes or traffic patterns that the policy enforcer is
capable of identifying.
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Trigger event report collection. An interface is provided for trigger de-
vices to report that a trigger event has occurred. Trigger events can be reported
by either local or remote trigger devices. Local trigger devices report events via
a local interface such as USB, Bluetooth, Zigbee, or Z-Wave. Remote trigger de-
vices report events over a network interface either directly to the policy manager
or to a cloud service (e.g., over HTTPS) that the policy manager can poll to
determine when a trigger event occurs.

Untrusted device designation. The policy manager retrieves the list of
all devices connected to each policy enforcer, and provides an interface through
which the user designates the devices that are untrusted.

Policy translation and distribution. The policy manager must translate
IFTAT policies into instructions that can be enforced by the policy enforcer(s).
For example, IFTAT policies can be converted into packet filtering rules or
Software-Defined Networking (SDN) policies. When a trigger event report is
received, the policy manager (i) identifies traffic mediation actions correspond-
ing to any IFTAT policies triggered by the event; and (ii) sends the instructions
necessary for executing the actions to the corresponding policy enforcer(s).

4 Related Work

Many systems for mediating IoT traffic have been proposed; e.g., machine learn-
ing classifiers can identify and block anomalous or malicious traffic [10, 15]; or
devices can be assigned network access policies based on general device cate-
gories [4] or specifications of intended network access patterns provided by device
manufacturers [9]. Here, we discuss three systems in related work that modify or
update their traffic mediation behaviour in response to events observed on the
network; i.e., systems that employ what we refer to as trigger devices in IFTAT.

Table 1 summarizes and compares these three systems on the basis of how
each of them implements functionality that falls within the responsibility of
IFTAT trigger devices, policy enforcers, and policy managers. These systems can
be implemented in IFTAT, since the framework allows for the implementation
of different types of trigger devices and policy enforcers.

LeakyPick [13] uses a microphone-equipped security device to passively listen
for selected “wake words” (e.g., “Alexa” or “Hey Google”) to be spoken by the user
nearby a smart voice assistant. The security device checks if the voice assistant
connects to the Internet without the wake word having been spoken; this is
intended to check whether the voice assistant is only active while the user intends
it to be. The authors suggest that this technique could also be used to deny
network access to the voice assistant unless the wake word is spoken.

HomeSnitch [17] classifies IoT device communication into actions (e.g., firmware
update, video upload) using a classification algorithm on features extracted from
network traffic. A policy language is also proposed, which can allow or deny spe-
cific device activities, or use a device activity as a condition to allow or deny other
traffic. Since supervised learning is used to train the classifier on a manually-
labelled dataset, it is proposed that a service provider would be responsible for
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Related work Trigger device Policy enforcer Policy manager
LeakyPick† [13] Trigger event:

User-spoken wake
word
Detection method:
Monitor ambient
sound with
microphone

WiFi access point
for untrusted
devices denies
traffic by default
and forwards
traffic when
signalled by policy
manager

Policy syntax: Rule to
permit network access for
an untrusted device when
a specified trigger is
detected
Policy source:
User-specified

HomeSnitch [17] Trigger event:
Activity performed by
an IoT device
Detection method:
Identify activities
using a classifier
pre-trained on
network traffic
signatures

Network gateway
that receives
OpenFlow rules
from policy
manager

Policy syntax: Rule to
permit an untrusted
device activity when a
specified trigger is
detected
Policy source:
User-specified rules;
signatures downloaded
from 3rd party

SerenIoT [22] Trigger event:
Change in an IoT
device’s network
traffic patterns
Detection method:
Identify packet
signatures that were
not previously
observed

WiFi access point
for untrusted
devices that
receives firewall
rules from policy
manager

Policy syntax: Packet
signature to define
allowable traffic for
specified device
Policy source:
Proof-of-work blockchain;
new packet signatures are
submitted when trigger is
detected

Table 1. Comparison of IoT network traffic mediation systems proposed in related
work. The systems are compared on the basis of how each system implements func-
tionality that falls within the responsibility of each device class defined in IFTAT. We
compare only systems that modify their traffic mediation behaviour in response to
detected trigger events. We later propose and implement additional examples of how
IFTAT device classes can be instantiated.
† LeakyPick does passive detection, but also suggests the option of active prevention.

providing updated classifier models by collecting and labeling data to periodi-
cally re-train the classifier.

SERENIoT [22] uses a public proof-of-work blockchain that can be queried to
retrieve the allowable network traffic signatures for a given IoT device. Nodes on
the blockchain, called Sentinels, submit summaries of observed device behaviours
that get added to the blockchain if the majority of nodes have also observed the
same behaviour. New behaviours resulting from firmware updates would thus
be observed by the majority of nodes and added to the blockchain, whereas
malicious behaviour resulting from device compromise would not. Sentinels allow
any newly-connected device on the network to send and receive all traffic for a
one-minute period; this is used as a profiling phase to identify the device type if
possible and to determine its required network traffic.
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5 Trigger Events Identified and Proposed

Table 2 lists examples of trigger events that can be used in IFTAT. We categorize
the examples by the source from which the trigger event is derived: (i) physi-
cal measurements; (ii) software-based determination that a condition has been
satisfied; or (iii) signature- or heuristic-based detection. We list both generic
techniques and techniques proposed in academic literature that are suitable for
use as trigger events.

deGraaf et al. [2] propose a cryptographic protocol that operates via port
knocking to authenticate users prior to allowing application traffic through the
firewall. VibLive [23] is a secure continuous liveness detection technique, using
a microphone and loudspeaker, to ensure the user is present when giving voice
commands. We also propose a technique that, to the best of our knowledge, has
not previously been used for access control decisions: detection of when a user
opens or closes a specific application on their smartphone. He et al. [6] conducted
a survey of techniques for using physical sensors to detect home contexts rele-
vant to security-related decisions, such as user presence, user identity, or home
emergencies—these techniques can also be used to define trigger events.

Trigger source Trigger event Implementation
Physical Motion detected ‡

Door or window opened or closed —
Smoke detected, water detected, etc. —

Software Mobile application opened or closed ‡
User authenticated (e.g., to WiFi network) —
Timer expired ‡

Signature Phrase or word spoken by user [13]
Liveness detection [23]
Network traffic matched an activity signature [17, 22]

Table 2. Categorization of trigger events suitable for use in IFTAT.
‡ denotes trigger events implemented in this paper; — denotes trigger events listed as
examples but not implemented.

6 System Implementation

We implemented a proof-of-concept of IFTAT on a small test network to demon-
strate two use cases as follows.

UC1. A home owner wishes to deny network access to a smart doorbell
except for while a person is physically present in front of the device. This reduces
the time that the device is allowed outgoing network connections to align with
the user’s intended usage of the device (e.g., for communicating with a person
at their front door). Human presence should be determined without relying on
the untrusted device, so we use a separate motion sensor for this task.
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UC2. A business owner wishes to deny network access to a security camera
except for while an authorized user is using a mobile application to access the
camera feed. This prevents the device from being accessible to the Internet while
the user does not need to access it. The user’s smartphone serves as the trigger
device that reports when the user has launched the mobile app.

6.1 Hardware Overview

We use two Raspberry Pi 4 devices3: one of them running Home Assistant4 to
function as the policy manager, and the other running OpenWRT5 to function as
the policy enforcer. An Energizer Connect EOD1-1002-2002-SIL Smart Doorbell
and a ReoLink RLC-410-5MP security camera are designated as untrusted de-
vices. Two trigger devices are also implemented, an iPhone 12 Pro and a AM312
PIR motion sensor running ESPHome6 firmware. Fig. 3 depicts the network con-
nectivity between all devices. The policy enforcer has three network interfaces
(WAN, LAN, and WLAN) and performs routing, NAT, and packet filtering.

Internet
WAN

Interface

OpenWRT
Firewall

(Policy Enforcer) 

Home Assistant
(Policy Manager)

Ethernet

Ethernet

Ethernet

Network
Switch

ReoLink Security Camera
(Untrusted Device)

iPhone 12
(Trigger Device)

Cellular /
WiFi

Motion Sensor
(Trigger Device)

WiFi WiFi

Doorbell
(Untrusted Device)

Fig. 3. Connectivity diagram of devices in the proof-of-concept implementation. Each
device is labelled with its device class (untrusted device, trigger device, policy enforcer,
or policy manager).

Devices are assigned a static IP address to ensure that security policies are
applied to the correct untrusted devices. Alternative techniques can be used to
identify untrusted devices dynamically, e.g., via device fingerprinting [10, 12, 22].

6.2 Policy Manager

We implement IFTAT policies in YAML using Home Assistant automation rules;
for each rule we specify a trigger event and a corresponding traffic mediation
action to be taken. Table 3 describes the policies we defined to implement UC1
and UC2.
3 https://www.raspberrypi.org/
4 https://www.home-assistant.io/
5 https://openwrt.org/
6 https://esphome.io/
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Rule Trigger event Traffic mediation action
UC1a Motion detected near doorbell Allow outbound connections from

the doorbell to the Internet
UC1b Ten minutes elapsed since motion

detected near doorbell
Deny all outbound connections
from the doorbell to the Internet

UC2a User launched security camera
mobile app

Allow inbound connections from
the Internet to the security camera

UC2b Ten minutes elapsed since security
camera mobile app launched

Deny inbound connections from
the Internet to the security camera

Table 3. Description of IFTAT policies used to implement proposed use cases UC1
and UC2. The lettered suffixes distinguish between the two policies required for im-
plementing each use case.

The traffic mediation actions are taken by issuing a command over an SSH
connection to the policy enforcer. In a production-ready IFTAT implementation,
the policy manager would automatically translate each action into a series of
commands that the policy enforcer would understand. In our proof-of-concept
implementation, we manually create a shell script for each action that enables
or disables the iptables rules necessary to execute the action, e.g., allowing or
denying network access to the camera. A sample policy in YAML format to
implement UC2 is shown in Fig. 4.

To allow remote trigger devices to report trigger events, we use webhooks
on the policy manager. Each webhook is an HTTP URL with an embedded
bearer token to ensure that only authorized trigger devices (e.g., the iPhone)
can report trigger events. The webhook must be served over HTTPS to ensure
that the bearer token cannot be eavesdropped. Trigger devices within the local
network utilize Home Assistant’s ESPHome integration to monitor the motion
sensor’s state over the WiFi network.

a l i a s : Tr igger Secur i ty Camera Pol i cy
t r i g g e r :

− plat form : webhook
webhook_id : t r i g g e r −s e cur i ty −camera−elS4xo2eEykNlqS0GrlXeCvr

act i on :
− s e r v i c e : shell_command . enable_camera
− delay :

minutes : 10
− s e r v i c e : shell_command . disable_camera

mode : r e s t a r t

Fig. 4. A sample security policy to implement UC2.

6.3 Trigger Events

We implement three trigger events, which are detected as described below.
Mobile application opened. This event is reported by the iPhone using

the Shortcuts app. We create a shortcut that performs the following actions:



IFTAT: A Trigger-Based Network Policy Enforcement Framework 11

1. Send an HTTP POST request to the webhook exposed by the policy manager
(using the “Get contents of URL” action).

2. Launch the VLC App (using the “Open App” action).

The first action allows the phone to notify the policy manager that the user
intends to interact with the untrusted device (security camera) via the VLC
app. This trigger causes the policy manager to modify the active policy on the
policy enforcer to allow network access to the untrusted device. The second
action launches the application.

Motion present. This event is reported by the motion sensor. Home Assis-
tant presents a binary state (i.e., “on” for motion present or “off” not present)
for the motion sensor, which we monitor for changes from the “off” to the “on”
state to determine when the event has occurred.

Timer expired. This event was implemented in Home Assistant by config-
uring a timer to expire 10 minutes after either a Mobile application opened
or Motion present event is detected. Each of these two event types has its own
timer, which resets to 10 minutes if a new event of that type is detected before
the timer expires.

6.4 Policy Enforcer

Traffic mediation actions are implemented using iptables rules and the OpenWRT
UCI system. When blocking network access to a device, we ensure that any
active connections are terminated immediately by blocking all ESTABLISHED
connections as well. The ReoLink security camera and Energizer Doorbell are
configured as untrusted devices and by default will have all network access de-
nied unless the Mobile application opened or Motion present events are
detected.

Mediating traffic between devices on the same LAN requires using different
LAN segments (e.g., using separate VLANs) or using Software Defined Network-
ing as in HomeSnitch [17]. In the absence of such mechanisms, devices within
the same LAN segment can communicate with each other without restriction.

6.5 Performance Evaluation

The time delays between the events in Fig. 1 have practical implications for
creating IFTAT policies, since trigger events should be detected and the resulting
traffic mediation action should take effect before the untrusted device requires
network access. To evaluate the practicality of the policies we implemented, we
collected the following timestamps to compute the aforementioned delays:

1. When the trigger event is detected by the trigger device
2. When the trigger event report is received by the policy manager
3. When the traffic mediation instructions are received by the policy enforcer
4. When the change in network access is detected by the untrusted device
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All devices were synchronized with the same NTP server to ensure consistent
timestamps, and all delay calculations were averaged across ten runs. Fig. 5
provides a timeline of events that includes the delays computed from the above
timestamps that were collected for the enforcement of UC1a. We draw compar-
isons below with delays observed for the other policies.

E5. Enforcement Detected 

Time Elapsed 

E1. Trigger Occured 

E2. Trigger Detected

E3. Policy Determined 

E4. Policy Enforced 

312ms2.3s 253ms ~2.2s

Fig. 5. A timeline for enforcing security policies when a trigger is received for UC1a.

E1-E2. For UC1a, after motion occurs, there is a small delay before it
is detected by the motion sensor; this delay is sensor-dependent. As per the
AM312 datasheet, our motion sensor has an activation delay of 2.3 seconds. For
the remaining three use cases (UC1b, UC2a, UC2b), this delay is negligible.

E2-E3. For UC1a and UC2a, this delay was ∼300ms. This is the time
taken for Home Assistant to receive an external trigger and process the policy
(e.g., see Fig. 4) to determine the command to send to the policy enforcer. For
UC1b and UC2b, this delay is negligible since the timer trigger is implemented
directly on the policy manager.

E3-E4. All four policies from Table 3 consistently resulted in a delay of
∼250ms; this is the time taken to establish an SSH connection to the policy
enforcer and execute the shell script to enforce the policy.

E4-E5. For UC1a, a delay of ∼2.2s was measured before the Energizer
mobile app (which tracks the doorbell status through a cloud backend) would
identify the doorbell as online. In contrast, forUC2a, an RTSP connection could
immediately be opened from the mobile app to the camera upon the policy
being enforced, since the camera is accessed via a direct connection (i.e., the
delay was negligible). For both UC1b and UC2b, a cloud provider may cause
additional delay to identify the device as offline after failing to receive several
consecutive heartbeat messages. ForUC1b, connectivity to the doorbell resulted
in immediate disconnection from the video stream, but the doorbell was not
reported offline by the mobile app for ∼2.5s. In contrast, for UC2b, the camera
was immediately identified as offline by the mobile application.

Finally, we investigate the impact of the firewall rule table being updated each
time a trigger event report is received. To test whether network performance is
impacted, we used iperf37 to send a fixed number of UDP packets at a rate of
75Mbps to the policy manager from outside the local network (i.e., through the
WAN interface of the policy enforcer, which is the LAN-to-WAN gateway in our
implementation). In a control test with no rule updates, the average measured
round-trip delay and jitter between the policy manager and the external test
7 https://iperf.fr/
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device was 0.587ms and 0.1106ms, respectively; no packet loss occurred and the
TCP state table was preserved. To measure the impact of rule updates, we run a
shell script that updates the firewall rules by successively adding and removing
the rules forUC1 in a loop; we measured that the script executed 40 iterations of
the loop per second, with each iteration taking ∼25ms to complete. We repeated
the iperf3 test while the aforementioned shell script was running, and observed
an average round-trip delay and jitter of 0.589ms and 0.1134ms, respectively; no
packet loss occurred and the TCP state table was preserved. We thus conclude
that even under an unrealistically high rate of firewall rule updates as described
above, the impact on network performance is negligible.

7 Discussion

Herein we discuss how IFTAT can strengthen a network’s security and we discuss
avenues for standardization that would support the security objectives of IFTAT.

7.1 Security Considerations

We discuss how IFTAT can combat the spread and operation of IoT malware
(refer to T1) and the exfiltration of privacy-sensitive data (refer to T2). We also
discuss security considerations relating to the implementation of trigger devices.

Protecting externally-exposed devices against compromise. This is the
primary threat targeted by UC2 with the ReoLink security camera. In this use
case, IFTAT ensures that the device is only externally accessible when required
by the user. Externally accessible devices are regularly targeted by botnets via
IP scanning, causing any online and vulnerable devices to be infected by malware
[1]. IFTAT reduces the likelihood of infection, as the device can only be scanned
for a short period of time following a valid trigger event.

While home Internet gateway devices typically block incoming connections
by default to all devices on the home network, they provide user interfaces to
open ports to target devices. IFTAT offers the alternative of only openings ports
on a temporary basis in response to trigger events that reflect a legitimate user’s
attempt to access the target devices. Moreover, IFTAT can leverage the following
additional measures to further enhance the security of UC2:

i. The inclusion of an IP address in an allow list, ensuring only the mobile
device which performed the trigger is able to access the camera, this reduces
the risk to the levels of protection applied to the web hook bearer token.

ii. Incoming traffic to the policy enforcer targeting the untrusted device could
be collected while the untrusted device has been denied network access. Using
this data, signatures can be created representing traffic patterns sent to the
untrusted device in the absence of trigger events. This signature can then be
used to block potentially malicious traffic when the device is later allowed
network access.
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Preventing leakage of sensitive information. This is the primary threat
targeted byUC1. IFTAT restricts the device’s outgoing network communication
to only the time periods that align with the user’s intended usage of the device.
This reduces unnecessary opportunities for leaking sensitive information to the
device manufacturer or third-party trackers [8], and prevents the device from
performing other outbound malicious activities [1, 11]. However, devices which
are reliant the manufacturer’s cloud service may react differently to being con-
nected and disconnected from the Internet [16], e.g., by caching events locally
and sending them to the cloud when connectivity is restored. Techniques em-
ployed by OConnor et al. [16, 17] may be used to determine how devices behave
when they lose connectivity, and this can inform the creation of IFTAT policies.

Importance of countermeasures against trigger device spoofing. Should
a trigger device be spoofed or compromised, it may be possible for an attacker to
artificially signal the occurrence of a trigger event to allow network access to a
target untrusted device. Thus, it is critical to secure the communication channel
between the trigger devices and the policy manager. This can be achieved by
reporting trigger events to the policy manager over an encrypted channel, e.g.,
a TLS connection, or over a channel that is inaccessible to untrusted devices,
e.g., Zigbee or USB. This limits the attack surface that could be used by an
attacker to compromise a trigger device and use it to allow network traffic to
an untrusted device at will. However, the security of these channels may not be
perfect, and the risk of trigger device spoofing remains present in Zigbee devices
as well [20], especially if an attacker has physical access to the environment.

7.2 Standardizing IFTAT

Manufacturer Usage Descriptions (MUD) [9] provides a policy language that
device manufacturers can use to define a profile of the network access (e.g.,
protocols, port numbers, destination IP addresses or hostnames) that the device
requires. A device’s MUD profile can then be used to restrict its network access
and reduce its attack surface. Since MUD profiles are provided by the device
manufacturer, they would be expected to be more accurate than network traffic
profiles that are learned via traffic analysis as is done in aaa related work [17,
22] discussed in Section 4. The primary obstacle in the use of MUD profiles is
its limited adoption thus far by device manufacturers. Should MUD be more
widely adopted, IFTAT can use them to enforce more granular policies: when
a trigger event occurs, an untrusted device could be allowed only the network
access as defined by its MUD policy (instead of allowing unrestricted access),
thereby minimizing the attack surface of the device.

MUD could also be extended to support the concept of trigger devices. For
example, a device’s MUD profile could specify if certain types of network access
is required in response to external trigger events. For example, the MUD may
define the network access required by the device when a New firmware pub-
lished or Motion present event occurs. The former can be detected by polling



IFTAT: A Trigger-Based Network Policy Enforcement Framework 15

the manufacturer’s website to monitor for announcements that a new firmware
version has been released. The latter can be detected by allowing the user to
select a motion sensor device on the network to use as the trigger device.

8 Conclusion

IoT users deserve more control over the devices they own. To gain this control,
users must currently manage complex networking setups or manually add/re-
move firewall rules. Due to the dynamic nature of many IoT devices, this net-
work management requires constant supervision and adjustment to not interfere
with device functionality.

This paper presents IFTAT, a framework that gives users simple, granular,
time-restricted control over the network connectivity of untrusted devices on
their networks. Narrowing this connectivity time window substantially reduces
the amount of information that can be leaked, as well as the exposure win-
dow during which devices are vulnerable to attack or misuse. As demonstrated,
IFTAT can be deployed using existing IoT devices, hubs, and network infras-
tructure to create and manage policies, requiring no costly new equipment or
backend cloud services. We hope that IFTAT and future time-based access con-
trol systems based on our framework offer users peace of mind when bringing
new, potentially untrusted devices into their networks.
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